A Passively Stable Hovering Flapping Micro-Air Vehicle
نویسندگان
چکیده
Many insects and some birds can hover in place using flapping wing motion. Although this ability is key to making small scale aircraft, hovering flapping behavior has been difficult to reproduce artificially due to the challenging stability, power, and aeroelastic phenomena involved. A number of ornithopters have been demonstrated, some even as toys, nearly all of these designs, however, cannot hover in place because lift is maintained through airfoils that require forward motion. Two recent projects, DeLaurier’s Mentor Project and the TU Delft’s DelFly (Chapter 14), have demonstrated flapping based hovering flight. In an effort to push the field forward even further, we present here the first passively stable 24 g hoverer capable of hovering flapping flight at a Reynolds number similar to insects (Re = 8,000). The machine takes advantage of the clap and fling effect, in addition to passive wing bending to simplify the design and enhance performance. We hope that this will aid in the future design of smaller machines, and shed light on the mechanisms underlying insect flight.
منابع مشابه
Passively Stable , Untethered Flapping - Hovering Micro - Air Vehicle
I nsects and hummingbirds remain unmatched in their aerodynamic ability to hover in place in addition to other acrobatic feats such as flying backward and sideways by exploiting flapping-wing motion [1]. Although this remarkable ability is key to making small-scale aircraft, flapping-hovering behavior has been difficult to reproduce artificially because of the challenging stability, power, and ...
متن کاملFlight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover
This paper discusses a methodology of analyzing the flight dynamic stability of a flapping wing Micro Air Vehicle (MAV) in hover. The flexible flapping wings are modeled by a strain-based geometrically nonlinear beam formulation, coupled with an empirical aerodynamic formulation for load calculation on the wings surfaces. Wing flapping kinematics is described using a set of Euler angles. Nonlin...
متن کاملUsing a MEMS gyroscope to stabilize the attitude of a fly-sized hovering robot
Creating an autonomous flying vehicle the size of a honeybee presents a number of technical challenges because of its small scale. As vehicle wingspan diminishes, angular acceleration rates increase, necessitating sensing and control systems with high bandwidth. Hovering demonstrations have so far required feedback from highspeed motion capture cameras to estimate the angular velocity, attitude...
متن کاملAn investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight
This paper describes the research into the flight dynamics modelling and flight control of a flapping wing micro aerial vehicle (MAV). The equations of motion based on a multi-body representation of the vehicle and the flapping wings were derived and form the basis for the simulation program, which was developed using MATLAB and SIMULINK. The aerodynamic forces were obtained through experimenta...
متن کامل